Abstract

To investigate the effect of preoxidation on the secondary spontaneous combustion of coal, the changes in the key groups and thermal characteristic parameters in coal after preoxidation were investigated through Fourier transform infrared spectroscopy (FTIR), laser thermal conductivity, and thermogravimetric experiments. Results showed that the aromatic hydrocarbons in coal gradually decrease with the rise in the preoxidation temperature, the aliphatic hydrocarbons increase and then decrease, the -C-O- group gradually decreases, and the -C=O and -COO- group content slowly increases. Preoxidation promotes the breakdown of aromatic hydrocarbons and the oxidation of oxygen-containing functional groups in coal. Meanwhile, the thermal diffusivity of coal decreases after preoxidation, while the specific heat capacity and thermal conductivity increase and then decrease. The results of the thermogravimetric analysis indicate that preoxidation changes the characteristic temperature, but it does not change the process of spontaneous combustion. The spontaneous combustion process of raw and preoxidized coals can be divided into three stages: water evaporation, oxygen adsorption, and combustion. Further, the apparent activation energy increases and then decreases with a rise in the preoxidation temperature during the moisture evaporation stage, increases during the oxygen adsorption stage, and decreases during the combustion stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.