Abstract
Using a modified dynamic Monte Carlo renormalization group method, the two- dimensional kinetic Ising model is studied, and the dynamic critical exponent is obtained. The critical temperature of phase transition can be obtained by the renormalization method for the correlation function. In the method we used, the correlation function is replaced with the absolute value of the magnetization, and it is found that the evolution of the absolute value of the magnetization over time satisfies the power-law form. It is found that the value of the dynamic critical exponent tends to be a stable value in the form of a power-law function as the scale of the system increases. The dynamic critical exponent obtained is z≃2.15. When the modified dynamic Monte Carlo renormalization group method is applied to the two-dimensional Glauber model, the obtained dynamic critical exponent is z≃2.25.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.