Abstract

The pulsation bubble dynamics near a free surface have significant engineering applications. Based on the finite volume method, a front tracking method coupled with an extrapolation technique is applied to study the transient characteristics of the pulsation bubble near the free surface with the different stand-off distance parameter γ and buoyancy parameter δ (the parameters are defined in Sec. II D). By comparison, the numerical results agree well with the results from the spark-generated bubble experiment. For the cases with small δ, (i) the phenomenon that the bubble top is elongated is no longer obvious while γ > 2.0, (ii) with the decrease in γ, the bubble centroid at the minimum volume is gradually away from the free surface except for migrating upward while 0.85 < γ < 1.0, and (iii) while γ > 1.2, the free surface begins to fall with the bubble collapse after rising during the expansion stage and almost falls back to its original position while γ > 2.4. For the cases with γ = 1.0–1.13, (i) while δ > 0.2293, the jet penetrates the bubble before the bubble reaches its minimum volume, and both are contrary while δ < 0.2293, (ii) while δ > 0.4636, the free surface begins to fall with the bubble collapse after rising during the expansion stage, and (iii) the bubble is always migrating toward the free surface while δ > 0.4109. Meanwhile, the phenomena such as the inward jet formed inside the toroidal bubble, the toroidal bubble split, and the water skirt are also analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call