Abstract

In the present work, nanoindentation experiments were carried out to characterize the localized transfer film layer (TFL) on a steel disk, which resulted from a sliding contact of the latter against a polymer composite pin. It was found that the hybrid nanocomposites filled with both nanoparticles and traditional tribo-fillers were more effective to form durable TFLs on the steel counterpart, associated with desirable tribological properties of the sliding system, i.e., a low friction coefficient and a low wear rate. By studying the load-displacement behavior of polymeric TFLs on metallic substrates, the thickness of TFLs could be estimated, thus, allowing the comparison of TFLs formed under different sliding conditions in a quantitative way. Based on the experimental data, the effects of TFLs on the tribological performance of polymer composites were further discussed in terms of a “transfer film efficiency factor” λ, which was calculated by the ratio of the average thickness of the TFL to the surface roughness of the steel counterpart. The factor mainly considered the relative contributions of the TFL and the metallic counterface to the wear process of the polymer-on-metal system. Accordingly, the wear rate and the friction coefficient of the sliding system could be analyzed as a function of the transfer film efficiency factor, resulting in a Stribeck type diagram. The analyses provided new insight into the role of TFLs in polymer tribology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.