Abstract

The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.