Abstract

Realizing macroscopic superlubricity in the presence of external electric fields (EEFs) at the steel interfaces is still challenging. In this work, macroscopic superlubricity with a coefficient of friction value of approximately 0.008 was realized under EEFs with the lubrication of LiPF6-based ionic liquids at steel interfaces. The roles of cations and anions in the superlubricity realization under EEFs were studied. Based on the experimental results, the macroscopic superlubricity behavior of Li(PEG)PF6 under EEFs at steel interfaces is attributed to the strong hydration effect of Li+ cations and the complete reactions of anions that contributed to the formation of a boundary film on the appropriate surface. Moreover, the reduction in the number of iron oxides in the boundary film on the disc was beneficial for friction reduction. We also provide a calculation model to describe the relationship between the hydration effect and the optimal voltage position, at which the lowest friction might occur. Ultimately, this work proves that macroscopic superlubricity can be realized under EEFs at steel interfaces and provides a foundation for engineering applications of superlubricity in an electrical environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.