Abstract

Internationally there is considerable interest in utilizing hydrogen as an energy carrier. The use of hydrogen offers considerable potential benefits such as reducing greenhouse emissions, reducing urban pollution, increased energy security and increased efficiencies from the use of advanced energy conversion technologies. One of the most important questions when considering the development of a hydrogen economy is “where will the hydrogen come from?” Possible answers include electrolysis of water, steam reforming of methane and the gasification of coal. Given the high costs associated with electrolysis of water, and the increase in the cost of methane predicted over time, the gasification of coal is viewed by many as being the cheapest method of hydrogen production in the foreseeable future. These considerations are particularly relevant to New Zealand where gas supplies are dwindling but where there is sufficient coal to last for many centuries at present utilization rates. This, along with the current high international interest in hydrogen energy, has been recognized by the New Zealand Government in the form of a six-year [2002–2008] research project “Hydrogen Energy for the Future of New Zealand”. One important coal property that, in particular, determines the suitability of a particular coal for use in a fluidised bed gasifier is its reactivity towards the gasification reaction. It was found that a high percentage of New Zealand's coal resource is particularly well-suited towards fluidised bed gasification, reacting at anywhere between 0.9 to 1.75 times the rate of Australian brown coals. It was found the New Zealand lignites contained significant levels of organically bound calcium, which was shown to be responsible for not only the high reactivity of the New Zealand lignites, but also a product gas composition with higher than expected hydrogen concentrations. These findings are discussed along with their implications for the gasifier and gas clean-up design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.