Abstract
The choice of constitutive model significantly affects the accuracy of concrete perforation simulation. This study analyzes four concrete constitutive models, HJC, RHT, KCC, and TCK, focusing on their strength models, damage evolution, and strain rate effects. Combining the damage pattern and erosion cracks, the effectiveness of the four constitutive models in simulating the penetration of reinforced concrete targets is evaluated using LS-DYNA 11.0. The results indicate that the RHT and TCK models accurately depict the concrete damage and failure modes under the same test conditions. In contrast, the KCC and HJC models demonstrate superior capability in predicting the residual velocity of the projectile. Additionally, this study highlights the significant impact of the erosion parameters on the simulation results. This study offers a valuable reference for the application and parameter set of constitutive models in simulating concrete target perforation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.