Abstract

Nonpolar Zn(Mn, Na)O thin films with orientation (a-plane) have been successfully grown on r-plane sapphire substrates by pulsed laser deposition (PLD) through a Mn-Na codoping route. The X-ray diffraction(XRD), field-emission on scanning electron micorscope(FE-SEM), Hall-effect and X-ray photoelectron spectroscopy(XPS) measurements show that substrate temperature and work pressure have a significant influence on the nonpolar growth of Zn(Mn,Na)O thin films. The films prepared under a work pressure of 0.02Pa and substrate temperature of 600 ℃ could achieve a high quality crystallite with fine optical and electrical properties through Mn-Na codoping. Moreover, the influence of the growth orientation on room temperature ferromagnetism (RTFM) of the thin films is investigated by superconducting quantum interference device(SQUID), and the possible mechanism involving the origin of RTFM in the Zn(Mn,Na)O films is discussed as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call