Abstract

AbstractIn this study, the conductive silicone rubber composites filled with nickel‐coated graphite (NCG) have been prepared, and their morphology structure, electrical conductivity, electromagnetic interference shielding efficiency (EMI SE), and mechanical properties have been investigated with reference to the NCG filler loading. The mechanical strength of NCG particle was poor that it can be easily ground into smaller particle during the mixing process if the shear force during mixing is large enough. The electrical conductivity of the composites existed an obvious threshold value with the variation of the loading amount of the conductive filler. EMI SE of the composites increases with the decrease of the volume electrical resistivity. The Payne effect can be used to characterize the intensity of the three‐dimensional conductive network structure in silicone rubber matrix, and the difference of storage modulus in the low and high shear strain has good linear correlation with the electrical conductivity. So, the electrical conductivity and EMI SE can be estimated by means of the difference of storage modulus obtained from rubber process analysis test. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.