Abstract

This paper investigates the structural behavior of openings in subway station floor slabs through model experiments and finite element simulation. The study analyzes the effects of the opening's aspect ratio, dimensions, and position on the stress characteristics of various structural components. Based on the stress levels and failure characteristics at different locations in the station structure, three reinforcement schemes are proposed: adding corner fillets, installing buttress columns, and adding ring beams. Comparative analysis with the original structure's internal forces and displacement patterns reveals the effectiveness of each reinforcement scheme. The results show that openings reduce the moment of inertia of the floor slab cross-section, weakening the slab's stiffness and making the area around the openings and slab-column joints prone to local damage. Increasing the aspect ratio of the opening, enlarging its dimensions, or closely arranging multiple openings diagonally reduces the local load-bearing capacity of the structure. Adding corner fillets can reduce the maximum equivalent stress in the slab by more than 15 %, alleviating stress concentration caused by the openings. Buttress columns and ring beams increase the stiffness of the side walls, distribute the lateral forces causing wall bending moments, and enhance the structure's resistance to lateral displacement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.