Abstract

Theoretical investigations were carried out to study the influence of two-phase flow parameters such as friction factor multiplier, drift velocity and void distribution parameter on the stability of boiling two-phase natural circulation systems. The theoretical model considers a four-equation drift flux model which solves the linearised conservation equations of mass, momentum and energy applicable to boiling two-phase natural circulation systems. The model was applied to three boiling natural circulation loops wherein Type I and Type II instabilities were observed over a wide range of operating pressures. The two-phase friction loss was predicted using different friction factor multiplier models available in literature. It was found that these models influence the steady state and threshold powers for stability, especially the Type II instabilities in natural circulation significantly. Since the void fraction depends on the drift velocity and the void distribution parameter in two-phase flow, these parameters were varied and their effects on the natural circulation flow stability were investigated. It was found that an increase in either the drift velocity or the void distribution parameter reduces the unstable regions observed in the Type I or Type II flow instabilities in two-phase natural circulation systems. Further, investigations were carried out to study the effect of loop diameter on the Type I and Type II instabilities in natural circulation. This study is important to reveal the capability of the reduced diameter scaled facilities of the prototype systems to simulate natural circulation instabilities. The results indicate that with increase in the loop diameter, the threshold power of the Type I instability and the Type II instability increases. Moreover, the stability of natural circulation greatly enhances with increase in the diameter of the loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.