Abstract

The biological activity and absorption of curcumin (Cur) is limited in application due to its low water solubility, poorstabilityand rapid metabolism. In this work, Cur loaded (-)-epigallocatechin-3-gallate (EGCG)/poly(N-vinylpyrrolidone) (PVP) nanoparticles (CEP-NPs) was successfully fabricated via self-assembly driven by hydrogen bonding, providing with desirable Cur-loading efficiency, high stability, strong antioxidant capacity, and pH-triggered intestinal targeted release properties. Molecular dynamics simulations further indicated the Cur was coated with EGCG and PVP in CEP-NPs and high acid prolonged release property was attribute to low ionization degree of EGCG. Besides, the enhanced intestinal absorption of Cur was related to inhibition of Cur metabolism by EGCG, enhancement of cellular uptake and higher Caco-2 monolayer permeation. Pharmacokinetic study showed that the oral bioavailability presented nearly 12-fold increment. Therefore, this study provides a new horizon for improving the Cur utilization in food and pharmaceutical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.