Abstract

Owing to the nonlinear influence of river discharge, estuarine tides are nonstationary and more complicated than oceanic tides. This study investigated the spatiotemporal variation pattern of the Yangtze estuarine tides by considering tidal species separated using the Variational Mode Decomposition (VMD) model. The separated tidal species were compared with tidal species reconstructed using the NS_TIDE model. The results showed that the subtidal (D0) amplitude increased landward because of the enhanced influence of river discharge and river-tide interactions; diurnal (D1) and semi-diurnal (D2) tidal amplitudes consistently decayed landward because of frictional dissipation and nonlinear energy transfer to other tidal constituents; while quarter-diurnal (D4) and six-diurnal (D6) tidal amplitudes initially increased and then decreased in the landward direction because of the transformation of the dominant role of river discharge from nonlinear energy transfer to frictional dissipation. The spatiotemporal variations in different tidal species can illustrate other tidal processes, such as seasonal differences in tidal duration asymmetry. Although the VMD model neglects the separation of each tidal constituent, it can provide reasonable information, even when NS_TIDE may provide implausible results during the flood season because of the highly nonstationary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.