Abstract

Abstract After Fukushima nuclear power plant disaster, the efforts to overcome these defects of PWRs were carried out, such as replacing the cladding and fuel materials. One of these feasible efforts is using Fully Ceramic Microencapsulated (FCM) fuel replacement traditional UO2 pellets fuel into PWR. The FCM fuels are composed of Tri-structural-isotropic (TRISO) particles embedded in silicon carbide matrix. The TRISO fuel can hold its containment integrity and without fission production releases under the design temperature limit of 1600 °C. Furthermore, the silicon carbide matrix will benefit the thermal conductivity, radiation damage resistance, environmental stability and proliferation resistance. Consequently, the safety of the reactor could be significantly improved with FCM fuel instead of the conventional UO2 pellet fuel in PWR. We also analyzed the temperature distribution for the FCM fuel compared the traditional UO2 pellets, the calculation indicated that the centerline temperature is lower than UO2 pellets due to FCM higher thermal conductivity. The calculation demonstrated that, utilizing FCM replacement of conventional UO2 fuel rod is feasible and more security in a small pressurized water reactor. In this paper, a small pressurized water reactor utilizing FCM fuel is considered. A 17 × 17 fuel assemblies with Zircalloy cladding was applied in conceptual design through a preliminary neutronics and thermal hydraulics analysis. The reactor physics is accomplished, including the refuel cycle length, the effective multiplication factor, power distribution analysis being discussed. The Soluble Boron Free (SBF) concepts are introduced in small PWR, as a result, it makes the nuclear power plant more simpler and economical. FCM fuel loading has a very high excess reactivity at the beginning of reactor core life, and it is important to flat reactivity curve during operation, or to minimize excess reactivity during the core life. Consequently, conventional burnable poison configurations were introduced to suppress excess reactivity control at beginning of cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call