Abstract

A combination of the moisture content, dynamic energy produced by the waves and the vessel engines along with the characteristics of the bulk cargo itself may lead the mixture to liquefy. When the liquefaction of the granular bulk cargo occurs, it may behave like a fluid and can cause the vessel to list or even capsize. In this study, based on a computational fluid dynamics (CFD) solver, a numerical model was developed to simulate the sloshing problem for nickel ore slurries with three different moisture contents. The volume of fluid (VOF) method is adopted to capture the movement of the fluid interface. To validate the present model, the simulation results were compared with experimental data. The numerical results are in good agreement with the experimental results. Finally, the present model was used to investigate the dynamic behavior of nickel ore slurries with different moisture contents combined with non-Newtonian Herschel–Bulkley and Bingham constitutive equations. After taking the grid and time step independence study, the dynamic moment impacted on the cargo hold model boundaries was calculated. The effects of different moisture contents, the excitation amplitude, and the frequency on the sloshing-induced moment and the free surface deformation were discussed extensively. The results confirm that the proposed model can be used to predict the movement of the nickel ore slurry and analyze its impact moment on the cargo hold model when it takes a roll motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.