Abstract
The study of rock burst tendency of rock masses with different sizes plays a key role in the prevention of rock burst. Through theoretical analysis, it is proposed that uniaxial compressive strength and deformation modulus ratio are the key mechanical parameters affecting rock burst occurrence. In order to find out the size effect of uniaxial compressive strength and deformation modulus ratio, theoretical analysis and uniaxial compression experiment are carried out on rock samples with different heights, different cross-sectional areas and different volumes. The results show that the smaller the uniaxial compressive strength is, the larger the deformation modulus ratio is, and the more likely rock burst are to occur. On the contrary, rock burst is still not easy to generate. The uniaxial compressive strength of rock samples with different heights, different cross-sectional areas and different volumes increases with the increase of rock sample size. The deformation modulus ratio of rock samples with different heights and different volumes shows an upward trend on the whole, while that of rock samples with different cross-sectional areas shows a downward trend on the whole. The fracture forms of rock are analyzed using the energy conversion law in the process of deformation and failure for three kinds of rock with different shapes and sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.