Abstract

The performance of internal rear surface reflectance of crystalline silicon solar cells is becoming more and more important with the decrease of thickness of the silicon wafers. In this paper PC1D was used to simulate the correlations between the rear surface reflectance and the electrical as well as optical properties of the solar cells. The results showed that the short circuit current, open circuit voltage and quantum efficiency were all enhanced with the increase of the rear reflectance. When the rear reflectance increased from 60% to 100%, the short circuit current, open circuit voltage and maximum output power were improved by about 0.128 A, 0.007 V, and 0.066 W, respectively. The internal quantum efficiency was improved by 39.9%, the external quantum increased by 17.4%, and the efficiency of the solar cells was enhanced by 0.4% at 1100 nm wavelength. The screen-printing was selected to prepare SiNx/Al reflector, and experimental results showed that the SiNx/Al reflector has desired characteristic of internal rear reflectance, with the reflectivity of 15% higher than that of conventional aluminum BSF at 1100 nm wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.