Abstract

This paper analyzes the shear behavior of prismatic and tapered continuous beams with corrugated steel webs (CSWs) under different external prestressing tendon layouts. For girder bridges with CSWs, the existing design specifications consider only the shear force caused by the external prestressing force when calculating the shear stress of CSWs under the external prestressing tendons. However, in a tapered continuous beam with CSWs, in addition to the shear force caused by the prestressing force, the prestressing bending moment and the horizontal component of prestressing can also induce additional shear stress, which results in a redistribution of the shear stress on the section. This finding has not been reported previously. Then, the reasons for the shear behavior differences of tapered and prismatic continuous beams with CSWs under external prestressing tendons are explored. The study reveals the factors affecting the distribution of shear stress on indeterminate static beams with CSWs under external prestressing and proves that the traditional method used for predicting the shear stress on CSWs is not applicable to tapered cases. In addition, it is found that the direction of the internal forces and moments also affects the shear-bearing ratios of CSWs and concrete slabs. Consequently, a unified analytical formula is proposed for calculating the shear stresses of the CSWs induced by external prestressing, and it can be applied to both tapered and prismatic continuous beams with CSWs under external prestressing tendons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call