Abstract

The cable-stiffened single-layer latticed shell is a new type of spatial structure. In this paper, a shape optimization method is proposed for two kinds of cable-stiffened single-layer latticed shells. Firstly, an optimization algorithm is proposed to minimize the strain energy of shell. Interior-point method, conjugate gradient method and golden section method are adopted as the approach of constraint optimization, the minimization algorithm and the line search strategy, respectively. Secondly, the derivatives of stiffness matrixes of two kinds of cable-stiffened systems are discussed. Finally, optimization program is programmed in MATLAB and a numerical example is carried out. The linear buckling load, the displacement and the stress distribution of the optimized shells are investigated. According to numerical results, the structural behaviours of cable-stiffened single-layer latticed shells are improved significantly. The optimization method suggested in this paper is valid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call