Abstract

Shale inhibitor is an additive for drilling fluids that can be used to inhibit shale hydration expansion and dispersion, and prevent wellbore collapse. Small molecular quaternary ammonium salt can enter the interlayer of clay crystal, and enables an excellent shale inhibition performance. In this paper, a novel ionic shale inhibitor, triethylammonium acetate (TEYA), was obtained by solvent-free synthesis by using acetic acid and triethylamine as raw materials. The final product was identified as the target product by Fourier transform infrared spectroscopy (FT-IR). The inhibition performance of TEYA was studied by the mud ball immersion test, linear expansion test, rolling recovery test and particle size distribution test. The results demonstrated that the shale inhibitor shows a good shale hydration inhibition performance. The inhibition mechanism was studied by FT-IR and X-ray diffraction (XRD), respectively; the results showed that triethylammonium acetate TEYA could enter the crystal layer of clay and inhibit it through physical adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.