Abstract

The length stability of optical cavities is vital in ultra-stable, cavity-stabilized laser systems. Using finite element analysis, we study the length deviation of optical cavities due to thermal expansion and thermo-refractive effects when the incident light power is changed. The simulated fractional length sensitivity of a 7.75-cm-long football cavity to the power fluctuation of incident light is 5×10−14/μW, which is in agreement with the experimental results found by measuring the frequency change of a cavity-stabilized laser when the incident light power is changed. Based on the simulation, the cavity sensitivity to light power fluctuation is found to depend on the cavity size and material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.