Abstract

In accordance with the Seismo-Geothermics theory about methods of intracrustal strong earthquake and volcano prediction, we use the ANSS earthquake catalogue from the Northern California earthquake data center and the EMSC earthquake catalogue from the European-Mediterranean Seismological Centre to study the seismic activities of the Turkish Branch Seismic Cone in the Mediterranean Seismic Cone and the following Aegean Sea Seismic Cone, and show reproduction through graphics and animation, the seismogenic process and seismogenic mechanism of the earthquake Mw6.9 on May 24,2014 innorthern Aegean Sea. It was concluded that the energy of strong earthquake of magnitude around7 inAegean Seawas probably from energy transfer and accumulation in deep mantle and incentive lithosphere in the way of wave pattern, and then the strong earthquake occurs suddenly in search of the weak parts of the surface structure. The purpose of this paper is to open a hole in the traditional seismic genesis, and it is beneficial to the further research on the theory and method of earthquake prediction. It is our first attempt to study this case and it needs further examination. In this paper, we divide the Turkish Branch Seismic Cone of the Mediterranean Seismic Cone into 4 tertiary seismic cones, and we show a preliminary seismo-tectonic model of Aegean region. It will be conducive to seismic monitoring and earthquake prediction research inGreece,Turkey,RomaniaandPolandregions. At present, the world’s earthquake prediction has little effect, and it even tends to be not cognitive. Innovative thinking is the only way out.

Highlights

  • Using the ANSS earthquake catalogue of magnitude 4+ from the Northern California earthquake data center and the EMSC earthquake catalogue of magnitude 1+ from the European-Mediterranean Seismological Centre, according to the author’s about Seismo-Geothermics theory and method [1]-[3], the seismic activity space distribution and time course of earthquakes in the Turkish Branch Seismic Cone of the Mediterranean Seismic Cone are studied and the seismogenic process of the earthquake of magnitude Mw6.9 on May 24, 2014 in northern Aegean Sea is given in this paper

  • Seismo-Geothermics theory suggested that global strong earthquakes and volcanic activity are control by a hot engine belt tectonic system and a cooling seismic belt tectonic system in the Earth; the hot engine belt is composed of 24 known seismic cones defined by the author, which controls all global deep earthquakes, 92% of the intracrustal strong earthquakes, and 83% of volcano activities

  • In accordance with the Seismo-Geothermics theory about methods of intracrustal strong earthquake and volcano prediction, we use the ANSS earthquake catalogue from the Northern California earthquake data center and the EMSC earthquake catalogue from the European-Mediterranean Seismological Centre to study the seismic activities of the Turkish Branch Cone in the Mediterranean Seismic Cone and the following Aegean Sea Seismic Cone, and show reproduction through graphics and animation, the seismogenic process and seismogenic mechanism of the earthquake Mw6.9 on May 24, 2014 in northern Aegean Sea

Read more

Summary

Introduction

Using the ANSS earthquake catalogue of magnitude 4+ from the Northern California earthquake data center and the EMSC earthquake catalogue of magnitude 1+ from the European-Mediterranean Seismological Centre, according to the author’s about Seismo-Geothermics theory and method [1]-[3], the seismic activity space distribution and time course of earthquakes in the Turkish Branch Seismic Cone of the Mediterranean Seismic Cone are studied and the seismogenic process of the earthquake of magnitude Mw6.9 on May 24, 2014 in northern Aegean Sea is given in this paper.So far, people often think that earthquake preparation and occurrence are due to the strain energy accumulation of near surface geological tectonic movement (fault or fold), and it requires assumptions of the subduction zone and interpretation by phase transformation, so are intracrustal strong earthquakes and deep seismic activities. The results of this study indicate that the energy accumulation of intracrustal strong earthquakes can be derived from the upper mantle, and intracrustal strong earthquakes may be related to the crustal structure just before its occurrence. This result opens a small gap to the traditional seismic genesis, and may change the theory and method of earthquake prediction. We have made some experimental examples [4]-[8]

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call