Abstract

Gemstone spectral computed tomography (GSCT) has been used to measure bone mineral density (BMD) in human vertebrae and animal models gradually. To investigate the effect of scanning protocols for BMD measurements by GSCT using the European spine phantom (ESP) and its accuracy and precision. The ESP number 145 containing three hydroxyapatite (HAP) inserts with densities of 50, 100, and 200 mg/cm3 were labeled as L1, L2, and L3, respectively. Quantitative CT (QCT) protocol and 14 groups of scanning protocols configured by GSCT were used to repeatedly scan the ESP 10 times. Their measurements were compared with the true values of ESP and their relative standard deviation and relative error were calculated. The measured values of the three inserts at different exposure levels were statistically significant (P < 0.05). The measured values in the 0.8 s/r 260 mA group, 0.5 s/r 630 mA group, and 0.6 s/r 640 mA group were not significantly different from the actual ESP values for L1 and L2. However, the measured values at all the parameters were significantly different from the actual values for the L3. CT gemstone spectral imaging can accurately and quantitatively measure the HAP value of ESP, but the results of BMD will be affected by the scanning protocols. The best scanning parameter of ESP measured by GSCT was 0.8 s/r 260 mA, taking dose into consideration, and the measurement accuracy of vertebrae with low BMD was higher than that of QCT under this parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.