Abstract

The purpose of this study was to examine the carbapenemase-encoding resistance genes and analyze homologous of multidrug-resistant Acinetobacter baumannii (MRAB) isolates from nosocomial infections. Seventy-six A. baumannii strains were collected from inpatients and object surface of devices in intensive care units from May 2008 to February 2011. Antibiotic susceptibility testing of 18 antimicrobial agents was performed. The presence of carbapenemase-encoding resistance genes was investigated by polymerase chain reaction. Genotyping and dendrogram analysis of A. baumannii strains from nosocomial infections were performed using the DiversiLab System. All of the 76 clinical A. baumannii isolates were shown multidrug resistance. The bla(OXA-23) gene was identified in the 76 MRAB strains, while bla(OXA-24), bla(OXA-58), VIM, IMP-1, IMP-4, SIM, and blaNDM-1 were absent in all. Twenty-four A. baumannii strains from the samples with nosocomial infections were classified into four unrelated groups and nine patterns. In conclusion, production of bla(OXA-23) in MRAB is one of the molecular mechanisms responsible for carbapenem resistance. The MRAB strains from unrelated groups show different drug resistance, but the homologous strains also have different drug resistance. Homologous analysis can provide scientific evidence for evaluation of epidemic status of nosocomial infection caused by MRAB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call