Abstract

Soil desertification and salinization are important environmental concerns in arid regions, and their relationship with groundwater change must be further clarified. However, the relationships among soil desertification, salinization, and groundwater are difficult to investigate on a large spatiotemporal scale using traditional ground surveys. In the windy beach area in Northern Shaanxi (WBANS), desertification and salinization problems coexist; therefore, this area was selected as the study area. The feasibility of implementing large-scale remote sensing inversions to identify the degree of desertification and salinization was verified based on measured data, and the degree of influence of groundwater burial depth (GBD) on desertification and salinization was quantified using the geodetector and residual trend analysis methods. The results showed that the GBD in the WBANS presented an increasing trend and the degree of salinization showed a decreasing trend. Moreover, the joint influence of the unique natural environment and anthropogenic activities has led to increases in fractional vegetation cover and considerable improvements in the ecological environment. The intensity of desertification explained by GBD in the WBANS increased significantly (p < 0.01) at a rate of change of 0.0190/year, with high q-values above 0.66 for both Yuyang and Shenmu. The contribution rate of potential evapotranspiration and precipitation to salinization in Yuyang and Shenmu was >97 %, and the contribution rate of GBD to salinization in Dingbian, Jingbian, and Hengshan was 34.78 %, 31.15 %, and 29.41 %, respectively. Overall, the suitable GBD in the WBANS is 2–4 m. The study results provide a reference for research on the inversion, monitoring, and prevention of desertification and salinization dynamics on a large spatiotemporal scale and offer a scientific basis for rationally determining GBD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.