Abstract

Plantation forests enhance carbon storage in terrestrial ecosystems in China. Larix kaempferi (Lamb.) Carrière (Lamb.) (Larix olgensis Henry) is the main species for afforestation in the eastern Liaoning Province. Therefore, it is important to understand the correlation between the site class and carbon sink potential of Larix kaempferi plantations in Liaoning Province for afforestation and carbon sink in this area. The model was fitted using three classical theoretical growth equations: the Richards model, the Korf model, and the Hossfeld model. This study used the forest resource inventory data for management in Liaoning Province in 2011 to build six dynamic height-age models for a Larix kaempferi plantation in Dandong City regardless of base-age. The optimal model derived by the generalized algebraic difference approach (GADA) method was compared with the model derived by the algebraic difference approach (ADA) method. The superiority of GADA was demonstrated by comparison. The Levenberg-Marquardt algorithm was used to fit the model. The statistical and biological characteristics were considered synthetically when comparing the models. The best model was screened out by statistical analysis and graphic analysis. The results show that the differential height-age model derived from Richards equation can well explain the growth process of Larix kaempferi in Dandong City, Liaoning Province under different conditions. The site index model based on Richards equation and derived by GADA was used to calculate the site class of a Larix kaempferi plantation in Dandong City. The net primary productivity (NPP) value from the past ten years was extracted from the MOD17A3HGF data set. Spearman correlation analysis and Kendall correlation analysis were used to show that there is a significant positive correlation between NPP value and site class of Larix kaempferi plantation in Dandong City. Among them, the highest growth occurred in 2016; NPP increased by about 3.914 gC/m2/year for every two increases in height-age grade; the lowest increase in NPP was in 2014; NPP increased by about 2.113 gC/m2/year for every two increases in height-age grade; and for every two increases in height-age grade in the recent ten years, the average NPP value increased by about 2.731 gC/m2/year.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.