Abstract

The in vitro and in vivo metabolism of monofluoroanilines was investigated. Special attention was focussed on the regioselectivity of the aromatic hydroxylation by cytochromes P-450 and the mechanism by which this reaction might proceed. The results clearly demonstrate that the in vitro and in vivo regioselectivity of the aromatic hydroxylation by cytochromes P-450 is dependent on the fluoro-substituent pattern of the aromatic aniline-ring. Results from experiments with liver microsomes from differently pretreated rats demonstrate that the observed regioselectivity for the aromatic hydroxylation is not predominantly determined by the active site of the cytochromes P-450. To investigate the underlying reason for the observed regioselectivity, semi-empirical molecular orbital calculations were performed. Outcomes of these calculations show that neither the frontier orbital densities of the LUMO/LUMO + 1 (lowest unoccupied molecular orbital) of the monofluoroanilines nor the spin-densities in their NH • radicals can explain the observed regioselectivities. The frontier orbital densities of the HOMO/HOMO − 1 (highest occupied molecular orbital) of the monofluoroanilines however, qualitatively correlate with the regioselectivity of the aromatic hydroxylation. Based on these results it is concluded that the cytochrome P-450 dependent aromatic hydroxylation of monofluoroanilines does not proceed by hydrogen or electron abstraction from the aniline substrate to give an aniline-NH • radical. The results rather suggest that cytochrome P-450 catalyzed aromatic hydroxylation of monofluoroanilines proceeds by an electrophilic attack of the (FeO) 3+ species of cytochrome P-450 on a specific carbon atom of the aromatic aniline-ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.