Abstract

To study the influences of the acid-washing on the characteristics of soybean stalk pyrolysis , and search the high-efficiency catalyst for biomass pyrolysis, pyrolysis experiments of soybean stalk pretreated by 0.1mol/L HCl acid solution were performed by nonisothermal thermogravimetric analysis (TGA) at five different heating rates. The results showed the pyrolysis process of HCl-washed soybean stalk can be separated into four stages (water loss, depolymeri-zation and vitrification, thermal decomposition, and carbonization). At the same heating rate, the maximum pyrolysis rate of HCl-washed is larger than untreated soybean stalk, but the corresponding temperature is higher. All the DTG (differential thermogravimetric) curveas appear a smaller shoulder peak respectively. With the heating rate increasing, the main pyrolysis zone of the TG (thermogravimetric) and DTG curves move to the high-temperature direction, and the maximum pyrolysis rate and its corresponding temperature increase too. HCl-wahsed makes the weight loss rate of the final temperature increase 5% approximately. The value area of activation energy of the main pyrolysis area is 140.19~174.59 kJ/mol calculated by the method of Ozawa. The Šatava method inferred the most possible mechanism function of HCl-wahsed soybean stalk is Zhuralev-Lesakin-Tempelman equation, which is three-dimensional diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call