Abstract

A simple method is described for the preparation of dextran-linked coenzyme derivatives. Several different 8-(6-aminohexyl)amino-adenine nucleotide coenzymes and their derivatives were covalently attached to dextran by incubation with bromohydroxypropyl derivatives of dextran at room temperature in an alkaline medium. The polymer-linked adenine nucleotide derivatives were separated from the free coenzyme derivatives by a Sephadex G-50 column. The prepared dextran derivatives have ligand densities ranging from 20 to 100 μmol/g of dextran derivatives depending on the conditions of coupling and derivatives. NMR studies revealed that proton resonances of the polymer-linked coenzymes exhibit short transverse relaxation times (T2) but long longitudinal relaxation times (T1) This phenomenon was interpreted in terms of the anisotropic motions of the dextran-bound coenzyme derivatives in which the fast axial motions and slow restricted transverse motions of the bound coenzyme derivatives are postulated. These observations could properly explain why the polymer-linked coenzymes exhibit lower biological activity, but similar binding affinity to most enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.