Abstract

Friction stir welding (FSW) has been considered ideal for aluminum alloy structures. The performance of FSW joints under unidirectional stress state has been widely tested, but there is still a lack of experimental data under a biaxial stress state. For accurate characterization of the mechanical properties of 2219 aluminum alloy FSW joints under a biaxial stress state, this article conducted biaxial tests. The FSW joint was tested using scanning electron microscopy (SEM) to obtain its microscopic properties and obtain the partition results of the welded joint. The stress–strain relationship and yield characteristics of welded joints under different loading ratios were studied using biaxial tensile tests of cruciform specimens combined with digital image correlation technology. By comparing it with the existing yield criteria, the yield criterion suitable for FSW joints of 2219 aluminum alloy under a biaxial tensile load was determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.