Abstract

Nitrate phase change materials (PCMs) are the most widely used PCMs in solar thermal power generation technology. The maximum service temperature of Nitrate phase change materials is only 600°C. Therefore, to find a phase change material with large heat capacity, wide temperature range, low heat loss and low price is the focus of current research. According to different mass ratios, nine binary molten salt mixtures were prepared by mixing lithium chloride and sodium chloride. The phase change temperature and latent heat of phase transition of them were studied by differential scanning calorimeter (DSC). The experiment results showed that since the melting point of sodium chloride was high, when the content of sodium chloride in the binary mixture of lithium chloride and sodium chloride was large, a small amount of lithium chloride could not reduce the melting point of the mixture below 600°C, the mixture could not be melted. Meanwhile, when sodium chloride and lithium chloride were melted, the phase transition temperature of lithium chloride and sodium chloride remained at about 540°C and floated at ±15°C. The melting temperature and crystallization temperature of the binary mixture of 90% lithium chloride and 10% sodium chloride were quite different, and the latent heat of phase transformation was relatively high. Therefore, the binary mixed molten salt can be used in the heat transfer and storage technology of solar power generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call