Abstract

Constrained groove pressing (CGP) as a severe plastic deformation (SPD) technique was applied on Al-Mn-Si sheets. In the following, direct- and cross-rolling were employed as supplementary processing in order to investigate the rolling-direction effect on CGPed sheets. The in-depth characterization of microstructural evolutions were employed using polarized light microscope and scanning electron microscope. Williamson–Hall analysis method was applied on X-ray diffraction (XRD) patterns of specimens. Analysis of XRD results revealed that post-rolling of CGPed sheets induced dynamic recrystallization (DRX) due to massive dislocations’ accumulation which follows by crystallite growth. The largest crystallite size which was 619nm achieved after direct-rolling through the rolling strain of 1.27. Maximum acquired peak intensity ratio for rolled sheets was for (220) crystallographic plane similar to annealed one. Also, post-rolling had altered the distinguished plane from (111) for CGPed sheets into (220). Mechanical characteristics of specimens were examined using hardness and tension tests. Based on the obtained results, direct-rolling of CGPed samples was more susceptible for strength enhancement compared to cross-rolling. Optimum achieved values for yield and ultimate tensile strength were 155 and 197MPa, respectively. Rolling in the both longitudinal and cross directions had almost similar effect on the final attained hardness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.