Abstract
This paper investigates the effect of fiber surface treatment on various properties of hair fiber reinforced composites. Human hair fiber reinforced modified epoxidized soybean oil based composites were prepared by compression molding technique. Acid treatment of hair fibers was carried out by using three different concentrations of HCl solution (0.25%, 0.75%, and 1%, respectively) in order to achieve improvement in adhesion between the fiber and the matrix. Epoxidized soybean oil was modified using methacrylic acid and methacrylic anhydride to form methacrylic anhydride modified epoxidized soybean oil. Rosin acid derivative (a rigid comonomer) was prepared and used as a crosslinker. Fourier‐transform infrared spectroscopy was carried out to study the interaction among the components of the composites. Various properties, namely, mechanical, thermal, flame resistance, and chemical resistance were checked. Scanning electron microscopy of the fractured surface of the composites was carried out to examine the morphologies. Hair fibers treated with 0.75% of HCl showed maximum improvement in all the properties and could be employed as reinforcement in various composites to be used for structural applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.