Abstract

In this study, we attempted to chemically cross-link decellularized blood vessel tissue and to perform cross-linking with a polymer in order to control its stability and functionalization. For this purpose, we cross-linked tissue by intrahelical, interhelical, and intermolecular cross-linking between the polymer and the collagen helix, which is a component of the native tissue. The intrahelically cross-linked tissue showed weaker stability against heat and degradation caused by collagenase compared to the interhelically cross-linked tissue. The tissue intermolecularly cross-linked with polymer showed the highest stability against heat and degradation caused by collagenase. The mechanical strength test showed that the Young's moduli were different for the intra/interhelically and intermolecularly cross-linked tissues, with the latter being stiffer. This is thought to be because the cross-linked polymer functions in the same way as elastin, whereas simple collagen cross-linking provides a supportive matrix that holds the collagen and elastin together.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call