Abstract
Quantum computation algorithms indicate possibility that non-deterministic polynomial time (NP-time) problems can be solved much faster than by classical methods. Farhi et al. [2], [3] have proposed an adiabatic quantum computation (AQC) for solving the three-satisfiability problem (3-SAT). We have proposed a neuromorphic quantum computation algorithm based on AQC, in which an analogy to an artificial neural network (ANN) is considered in order to design a Hamiltonian. However, in the neuromorphic AQC, the relation between its computation time and the probability of correct answers is not clear yet. In this paper, we study both of residual energy and the probability of finding solution as a function of computation time. The results show that the performance of the neuromorphic AQC depends on the characteristic of Hamiltonians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.