Abstract

The spontaneous combustion of broken coal is one of the main causes for mine safety accidents in goafs. To determine the effect of different air-leakage conditions on the spontaneous combustion of leftover coal, the air-leakage passage of the goaf was designed based on the principle of Sudoku grid in an inflammable coal seam. The temperature rise during the auto-ignition oxidation of coal was studied using a self-built experimental platform. By changing the air-flow rate, the laws of the change in the oxygen consumption rate and the heat release intensity with the coal temperature were analyzed. Results show that the oxygen consumption rate had three obvious peaks at 48?C, 75?C, and 105?C, respectively. Above 80?C, spontaneously combustion of the experimental coal samples began. The exothermic intensity increased exponentially with the rise of temperature. Furthermore, an exponential relationship was observed between the air supply at the working face and the spontaneous combustion of broken coal in the goaf. In addition, the increase in air supply in the fully-mechanized mining face increased the width of the oxidation zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.