Abstract

Coal miners on the fringes of cities are often exposed to respirable dust hazards. Spray is one of the most effective dust reduction measures. When studying the coupling and collision behavior of droplets and dust particles, it is helpful to optimize the parameter range of the droplets to capture dust particles at the mesoscopic level, to determine the effect of the spray field on the dust particles at the macroscopic level. In this study, the volume of fluid (VOF) method was used to track the interface of multiphase flow. A numerical simulation of 13 working conditions was carried out using the control variable method. Based on the numerical simulation results, we obtained the optimal parameter range for dust to be encapsulated by droplets. To confirm the reliability of the simulation, we independently developed an experimental system and conducted experiments. The simulation results obtained were measured using the experimental system, and an optimal droplet parameter range of 7 μm to settle dust in a coal mining face was determined. Numerical simulation using a mesoscopic method to study dust–spray coupling produced reliable results, which can be used in the practical application of spray dust reduction and has wider relevance for practical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.