Abstract

Although LEDs have been widely studied using optical simulations, there is no optical model considering the effect of micro-roughness surface (MRS) on the optical performance for packaged LEDs. In this work, we employ the finite-difference time-domain method and the direction-sensitive bidirectional scattering distribution function to characterize the optical properties of the MRS upon the n-GaN layer. The MRS is generated by the Weierstrass–Mandelbrot fractal function. Furthermore, thin-film LEDs (TFLEDs), blue TFLED devices, and white TFLED devices considering the MRS are investigated using the ray-tracing (RT) method. The results show that the MRS has different optical properties when the light propagates out and in the n-GaN layer. In turn, the difference in the scattering ability of various MRS causes a significant effect on the optical performance of packaged TFLEDs, including radiant efficacy, luminous efficacy, intensity pattern and spectrum, as well as the correlated color temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.