Abstract

In this paper, low circumferential reciprocating load foot-scale tests were performed on two nontruncated PHC B 600 130 tubular piles with bearing nodes to characterize the damage process and morphology of the specimens and to investigate the load-carrying performance of the members. The test results reveal that under the action of tensile-bending-shear loading, the bearing concrete in the node area buckles and is damaged, the anchored reinforcement in the node area yields, the constraint is weakened, an articulation point is formed, and the node rotational capacity increases. When the embedment depth increases from 200 mm to 300 mm, the ultimate bearing capacities of the positive and negative nodes increase by 31.04% and 36.16%, respectively. A numerical simulation is used to verify the test results. Considering the four types of piles without truncated nodes, the numerical simulation is used to analyze the node-bearing capacity at different embedment depths. Finally, a preferred node type is proposed as follows: a terminal plate welded anchor bar and pipe pile core-filled longitudinal reinforcement anchored into the bearing node, with a preferred embedment depth of 250 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call