Abstract

To ensure the safety and efficiency of hydrogen isotopes in the storage and delivery system (SDS), Zr-Mn-V based hydrogen isotopes storage alloys were prepared by induction levitation melting technique under Ar atmosphere. The effects of modification for Zr-Mn-V alloy of ZrMn2-xVx (x = 0, 0.4, 0.6, 0.8) and ZrMn1.4-yV0.6 (y = 0, 0.2, 0.4) on microstructure, hydriding kinetics, de-/hydrogenation thermodynamics, cycling stability and anti-disproportionation performance were systematically investigated. The results show that all alloys contain a main phase of ZrMn2 and little impure phase. Crucially, the lattice parameters of ZrMn2 phase increase after V substitution, as well as Mn decrease, leading the equilibrium pressure of dehydrogenation significantly decreases from 2.931 bar (ZrMn2-H) to 0.080 bar (ZrMn1.2V0.6-H) at 200 °C, and the corresponding enthalpy changes from 43.29 to 60.38 kJ mol−1 H2. Compared with ZrCo, ZrMn1.2V0.6 exhibits outstanding stability with 1.63 wt% during 20 cycles and scarcely losing on capacity through the anti-disproportionation measurement under the simulated SDS environment. Consequently, considering all the performances of ZrMn1.2V0.6 sample, it could be an alternative material for hydrogen isotopes storage and delivery to be applied in SDS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.