Abstract

The purpose of this study was to investigate the effect of Al content on Fe–Ni–Al coatings. A Fe–Ni–Al coating was prepared using a semiconductor laser, and the influence of the Al content on the microstructure and properties of the coating was examined. The microstructure of the coating was characterized using scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The coefficient of thermal expansion of the coating was measured using a static thermomechanical analyzer. The microhardness and wear performance of the coating were analyzed using a microhardness tester and a wear testing machine. The results were as follows. The addition of Al to the Fe–Ni ferroalloy powder resulted in the in situ formation of an AlNi/Fe–Ni laser cladding layer. When the Al content was low, the coating mainly consisted of γ-[Fe,Ni] austenite. As the Al content increased, the matrix phase structure of the cladding layer transformed into the α phase. Consequently, the Invar effect was gradually compromised, leading to the generation of defects in the coating. When the Al content was 4%, the coating performance improved while maintaining a low coefficient of thermal expansion. At this point, there were relatively few cracks in the cladding layer, and it exhibited the best wear resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call