Abstract

In order to improve the overall performance of edge plates such as bulldozer blades, composition and heat treatment processes were optimized on the martensitic wear-resistant steel grade 400 HB. Steel billets were first obtained through smelting in a state of hot rolling, followed by quenching and tempering to obtained wear-resistant steel (HB400). Then, HB400 was subjected to metallographic observation, electron backscatter diffraction (EBSD) testing, and transmission electron microscope (TEM) characterization and property testing. The results showed that HB400 exhibited microstructural refinement, characterized by narrower martensite laths and finer grains. The EBSD results indicated a uniform microstructure with a low content of the residual austenite (0.5%), indicating good hardenability. TEM observation of the martensite matrix revealed the presence of substructures, i.e., numerous dislocations in martensite laths. The average Rockwell hardness (HRC) of HB400 was 46.3, and the average Brinell hardness (HB) was 402. A mechanical properties test demonstrated comprehensive properties, which showed that the ultimate tensile strength and yield strength of HB400 were 1495 MPa and 1345 MPa, respectively, with a relative elongation of 12%. Friction and wear experiments showed that the friction coefficient and wear rate in reciprocating mode decreased by 16.1% and 45.4%, respectively, while in rotating mode, they decreased by 27.6% and 2.1%, respectively, as the load increased from 100N to 300N. According to the wear morphology, the main wear mechanisms were identified as adhesive wear, abrasive wear, and oxidative wear. The lubricating effect of the oxide layer generated by wear was identified as the primary reason for the reduction in the friction coefficient. The relationship between microstructures and properties was discussed based on grain refinement strengthening and dislocation strengthening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.