Abstract
Cu99.8Y0.2, Cu99.2Y0.8 and Cu98Y2 alloy ribbons were prepared by single roller melt spinning. The microstructure was studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), high voltage electron microscope (HVEM) and high resolution electron microscopy (HREM). The results showed that α-Cu was the dominative phase in the rapid solidification ribbons of three alloys. A secondary phase Cu4Y was detected in the Cu98Y2 ribbon by XRD. The grain size was in a range of 50-200 nm in the Cu99.2Y0.8 and Cu98Y2 ribbons. Many nano-scale twins and some dislocations existed inside the larger grains. However, the grains in Cu99.8Y0.2 ribbon were in the size of microns and the sub-grains with small misorentations were in 100-200 nm. To understand the deformation mechanism, in situ tensile test were carried out at a High Voltage Electron Microscope (HVEM). The results showed that the deformation is predominated by the dislocation slip in larger grains. To accommodate the deformation, elastic deformation occured in the small grains in the initial stage of the deformation. Meanwhile, some small grains maybe deform by grain rotations. With strain increasing, some fractures generated and propagated along the grain boundaries or across the grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.