Abstract

Previous studies indicate that mass transport deposits are related to the dynamic accumulation of natural gas hydrates and gas leakage. This research aims to elucidate the causal mechanism of seabed seepage in the western region of the southeastern Qiongdongnan Basin through the application of seismic interpretation and attribute fusion techniques. The mass transport deposits, bottom simulating reflector, submarine mounds, and other phenomena were identified through seismic interpretation techniques. Faults and fractures were identified by utilizing variance attribute analysis. Gas chimneys were identified using instantaneous frequency attribute analysis. Free gas and paleo-seepage points were identified using sweetness attributes, enabling the analysis of fluid seepage pathways and the establishment of a seepage evolution model. Research has shown that in areas where the mass transport deposits develop thicker layers, there is a greater uplift of the bottom boundary of the gas hydrate stability zone, which can significantly alter the seafloor topography. Conversely, the opposite is true. The research indicates that the upward migration of the gas hydrate stability zone, induced by the mass transport deposits in the study area, can result in the rapid decomposition of gas hydrates. The gas generated from the decomposition of gas hydrates is identified as the principal factor responsible for inducing seabed seepage. Moderate- and low-speed natural gas seepage can create spiny seamounts and domed seamounts, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call