Abstract

The reactions occurring in the oxidative degradation phase during the photo-oxidative degradation of polyethylene (PE) are the factors leading to molecular weight reduction. However, the mechanism of molecular weight reduction before oxidative degradation has not been clarified. The present study aims to investigate the photodegradation of PE/Fe-montmorillonite (Fe-MMT) films, especially molecular weight change. The results show the rate of photo-oxidative degradation of each PE/Fe-MMT film is much faster than that of the pure linear low-density polyethylene (LLDPE) film. A decrease in the molecular weight of polyethylene was also found in the photodegradation phase. Based on this, it was found that the transfer and coupling of primary alkyl radicals originating from photoinitiation lead to a decrease in the molecular weight of polyethylene, and the kinetic results validate this new mechanism well. This new mechanism is an improvement on the existing mechanism of molecular weight reduction during the photo-oxidative degradation of PE. In addition, Fe-MMT can greatly accelerate the reduction of PE molecular weight into small oxygen-containing molecules as well as induce cracks on the surface of polyethylene films, all of which can accelerate the biodegradation process of polyethylene microplastics. The excellent photodegradation properties of PE/Fe-MMT films will be useful in the design of more environmentally friendly degradable polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call