Abstract

In order to analyze the explosion accidents of the CRH5 EMU roof arrester in recent years, an internal temperature measuring platform based on fluorescence fiber was established, and the temperature distribution characteristics under the continuous operating voltage and high-current impulse were analyzed. The test results show that passing section overvoltage and steep impulse overvoltage have higher amplitudes, while high-harmonic overvoltage has a lower amplitude but a longer duration. The maximum temperature rise of the arrester was 5.2 °C under 34 kV for 3 h. The surface temperature of the valve plate column was high in the middle and low on both sides; the maximum temperature difference at different positions was only 2.2 °C. The maximum temperature of the valve plate column rose to 97.6 °C under 105 times of the high-current impulse, and the maximum temperature difference at different positions reached 33.8 °C. Then, the actual overvoltage of the arrester in operation was measured and analyzed statistically, and the arrester simulation model was established. The temperature characteristics of the normal arrester and the arrester with the electric tree were studied under the actual typical overvoltage, and the influence of air velocity on the internal temperature rise was analyzed. The simulation results show that, due to the low amplitude and small current of high-harmonic overvoltage, the internal temperature rise of the normal and defective arresters was very small. Under the effects of passing section overvoltage and steep impulse overvoltage, the internal temperature of the normal arrester can reach 36.57 °C and 241 °C, and the arrester with the electric tree defect can reach 44.75 °C and 536 °C, respectively. The air velocity has little effect on the internal temperature rise of the arrester. Passing section overvoltage and steep impulse overvoltage occur frequently and have an obvious influence on the internal temperature rise of the arrester, so the roof overvoltage of the EMU is an important reason for the arrester burst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.