Abstract

The matching status of agricultural water and land resources is a prerequisite for grain production. The influence of gray water footprint has not been paid attention to in the study of agricultural water and land resources matching based on water footprint. To measure the matching status of agricultural water and land resources more comprehensively, the total water footprint (including blue, green and gray water footprint) and the cultivated land area was taken as the characterization parameters of water and land resources, respectively. The Gini coefficient model, and the agricultural water and land resources matching coefficient model were constructed to calculate the matching degree of agricultural water and land resources in a cold region (Heilongjiang Province) of China. Based on the amount of agricultural water consumption, the equivalent coefficient model was used to evaluate the degree of agricultural water and land resources shortage or to be developed. The result of agricultural water and land resources matching coefficient model showed that the matching degree of agricultural water and land resources in Heilongjiang Province is getting better year by year, which is consistent with the calculations determined from the Gini coefficient. The result of the equivalent coefficient method based on agricultural water consumption was consistent with the result of the Gini coefficient method based on total water footprint, which is verified that it is scientific and reasonable to take the total water footprint as the characterization parameter of water resource. The findings may provide implications for the spatial optimal allocation of regional agricultural water and land resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call