Abstract

During hypersonic flight regime or re-entry flights, a phenomenon known as radio blackout occurs, in which the high velocities attained lead to a significant increase in temperature surrounding the vehicle. This raise is so substantial that the molecules around the vehicle start to ionize, surrounding the vehicle in electrons. These electrons will prevent electromagnetic waves from leaving or reaching the aircraft, preventing all communications. Several blackout mitigation schemes have been proposed, among which is the magnetic window. In this scheme, a magnetic field is imposed near the nose of the aircraft, which will then prevent electron movement, generating a spectral window through which the electromagnetic waves can pass. In this work, the effectiveness of this method in affecting the plasma density is tested. The mesh is tested for grid independency, ensuring an accurate solution in a sensible ammount of time. The effect of different magnetic field intensities is then tested for a CubeSat flying in hypersonic flight regime, in order to determine the effect of the magnetic field in the electron number density.
 Keywords: Magnetohydrodynamics, Radio blackout, Magnetic window, CubeSat

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call