Abstract

This study aims to analyze the load-bearing characteristics of non-pneumatic tires with composite spokes using experimental and finite element simulation methods and to establish a mechanical analysis model based on the Timoshenko beam theory. Subsequently, experiments were conducted on carbon fiber-reinforced plastics and rubbers to establish the corresponding constitutive model. A finite element model of the non-pneumatic tires with composite spokes was also developed. The main structural and material parameters were selected, and their correlation with the vertical stiffness of the non-pneumatic tires with composite spokes was studied using response surface methodology. The stiffness characteristics of the composite spokes were simplified, and a load-bearing characteristic analysis model was established. The results indicated that among the parameters of the reinforcement plate structure and rubber, the constitutive parameter C10 of the rubber in the spokes had the greatest impact, with a comprehensive influence value of 319.83 N/mm. Under a load of 5000 N, the load-bearing characteristic analysis model results were consistent with those of the finite element simulation, with a maximum relative error of 7.49%. The proposed load-bearing characteristic analysis model can assist in the rapid design and performance prediction of non-pneumatic tires with composite spokes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.